WEALDEN IRON

Second Series
No. 15 1995

Bulletin of the Wealden Iron Research Group

Including Index to Second Series Bulletins 11 - 15

ISSN 0266-4402
CONTENTS

Field Notes compiled by J.S.Hodgkinson 2
Ordnance recommended to arm defensive earthworks proposed for Sussex coast in 1587 Pam Combes 4
Cinderhill, Leigh, Kent B.K.Herbert 8
Notes on Early 18th-century Memoranda on the making of iron J.S.Hodgkinson 9
Fourth Foray on the London-Lewes Roman road B.K.Herbert 18
Final Foray on the London-Lewes Roman road B.K.Herbert 23
Index to Second Series Numbers 11 to 15 (1991-95) David Combes 28

Published by the Wealden Iron Research Group in collaboration with the West Sussex County Council Planning Department

Set by Denis Ashurst

Hon. Secretary Hon. Editor
Sheila Broomfield David Crossley
8, Woodview Crescent Division of Adult
Hildenborough Continuing Education
Tonbridge The University
Kent. TN11 9HD Sheffield S1 4ET

© Copyright, Wealden Iron Research Group, 1995
FIELD NOTES compiled by J.S. Hodgkinson

Medieval bloomery slag at Crawley, Sussex

A watching brief on building work at the rear of 101 High Street, Crawley, has noted a small amount of bloomery slag together with three sherds of late-Medieval pottery in the fill of a pit (TQ/2683736785). The building known as the Old Punch Bowl, behind which the pit lay, dates from the early-15th century. Other sites of Medieval ironworking have been noted in the High Street area. This latest discovery, notified to the Group by John Mills, Assistant County Archaeologist for West Sussex, fuels speculation that late-Medieval Crawley was a centre for small-scale, quasi-domestic iron trades.

A possible Medieval bloomery at Southwater, Sussex

Investigation by the Chichester District Archaeological Unit has revealed ditches, pits and post holes containing pottery of probable 14th century date, possibly associated with a Medieval smallholding, on the south side of Southwater Street, Southwater (TQ/16062724). A number of features contained bloomery slag, both tap slag and forging slag, including at least one forging hearth bottom. This site, again reported by John Mills, is from an area in which no other such sites are known.

A bloomery at Lyminge, Kent

Archaeologists from Liverpool University have discovered a bloomery extending over an area of 200 metres on Greatfield Farm, Stelling Minnis (TR/129454). The site, close to the Roman Stone Street, the ancient route from Lympne to Canterbury, lies on the chalk and appears to have drawn its ore from the iron-rich sandstone beds overlying the chalk. Other sites in the same area, TR/134430 and TR/167476, point to an outlier of the industry possibly associated with the ports at Lympne or Dover. We are grateful to David Higgins for notification of this site.
Great Cansiron Romano-British ironworks, Forest Row, Sussex

This site (TQ/448382) was described by Tebbutt, who noted the abundance of pottery and evidence of buildings. The Field Group revisited the site in October 1993. Very wet weather preceded the visit, and it was noticed that the stream, which lies along the northern boundary of Far Blacklands field, had overflowed and a second stream had come into existence further to the south, running in an approximately straight line from TQ/44743834 to TQ/44943827. It was observed that slag did not occur to the north of this new stream, suggesting that, in Roman times, the stream may have followed this more southerly course, silting up possibly occurring when the area was part of the tail of Cansiron Forge pond. Pottery of the Roman period, including four pieces of Samian ware and several sherds of mortaria, together with fragments from later periods were found in the northern parts of fields immediately to the south and south-west of the site. A scattering of bloomery slag was also found in the same part of the field to the south-west. With the consent of English Heritage a resistivity survey was commenced and will be continued.

A bloomery in Hartfield, Sussex

A bloomery has been discovered in a small ghyll south of the settlement at Cabbagestalk in the Parrock area of Hartfield parish (TQ/460338). The site lies on Ashdown Sand, south of the faulted boundary with the Wadhurst Clay, in an area with inferred industrial use in the Medieval period. Scattered with the slag were several large pieces of Cyrene limestone.

North-west of the above site, in Paradise Wood, there is subsurface slag at TQ/45753395, about 3 metres west of the easterly of two streams. The finding of a large bloomery furnace bottom at TQ/45753390 supports the possibility that a bloomery may have been situated nearby. Tebbutt noted a bloomery in the field to the west. Ponds in the wood may have been ore pits.
References:
 2nd ser. 10 (1990), 2.

THE ORDNANCE RECOMMENDED TO ARM THE DEFENSIVE EARTHWORKS PROPOSED FOR THE SUSSEX COAST IN 1587

Pam Combes

In 1870 Mark Anthony Lower published a copy of a survey of the coast of Sussex the original manuscript of which was, at that time, owned by a Lewes solicitor, Wynne E Baxter. The manuscript was purchased in 1971 by the British Museum and is now British Library Add ms 57494. The manuscript is entitled, 'A survey made by Sir Thomas Palmere knight and Mr Walter Couverte esquire Deputie Lieutennts of her Maties Countie of Sussex, of all the places of descente alongst the sea coast of the said shire'. The map is coloured and on vellum and the text is on paper. The survey is signed and dated Nicholas Reynolds, London, May 1587.¹

The title given to the document is somewhat deceptive since not only are the vulnerable areas of coast identified but proposals are made concerning defensive works to be undertaken and the ordnance with which the works should be armed. It is of note that a Sir Walter Covert [Covert] was owner in 1583 of a furnace and forge at Cuckfield. He was still associated with ironworks in 1589 when furnace owners were reprimanded for their failure to supply returns of their output and customers to the privy council. The omission of the knighthood in the description of the
Walter Couvert named in the survey makes it difficult to be certain that they were the same person, but it is possible that they were.²

The survey begins at the west of the county by the entrance to Chichester harbour and finishes at Rye. The text of the printed edition, not the original document, has been used for this note.³ The spelling of place-names and types of guns have been modernised.

The largest gun recommended was a demi-culverin. The smallest guns recorded were probably the bases, with sakers, minions, falcons, falconets and robinets in descending order of size between the two extremes. Quarter slings were also recorded, a demi-cannon and a curtall cannon, the latter a cannon with a short barrel. The purpose of the small shot is not clear; it could be either for small arms or to arm smaller pieces brought to those sites if and when they were required.

Cakeham Stone, the east point of Dell mouth [the channel up to Dell Quay] was to be fortified for the planting of one demi-culverin and two sakers. The same fortifications were recommended to be placed between the beacons⁴ and the church at Selsey and also at Pagham point. The need for trenches or flankers for small shot was also noted.

Littlehampton, the entry to Arundel, was to be fortified for the planting of two demi-culverins and two sakers. Some entrenching was recommended, but only where there were stades [beaches where vessels could be run aground] or beacons.

Shoreham was to be fortified for the planting of one demi-culverin and two sakers. Goring beacons and Kingston stade were to be flanked and trenched.

From Goring to Heene mill there was water between the beach and the stade, forming a defence in itself; between Heene and Worthing beacons was an existing small trench in 'cheverne' [chevron?] form which could be strengthened by trenching and flanking. At Lancing beacons a small trench flanked for small shot was proposed.

Between Brighton and Shoreham the landings were good and it
was considered necessary that two demi-culverins and two sakers should be kept in some good house 'to be readie at sudden'. In various other places there were to be trenches with sunken flankers for small shot.

Brighton itself was already supplied with ordnance but this was still considered insufficient; sunken flankers for small shot were recommended in addition to the demi-culverin, three sakers, and the minion and falcon which were already mounted and furnished with shot. Powder was lacking. Trenches with flankers for small shot were recommended for Saltdean and Moordale, both of which lie on the coast between Brighton and Newhaven.

At Newhaven the existing ordnance was unmouted and considered of little worth. A bulwark of earth was recommended for the planting of one demi-culverin and two sakers. To the east at Blatchington Hill two rampiers [defensive ramparts] of earth were to be made with one demi-culverin and one saker in each. At Blatchington town they had one saker and at Alfriston church two pieces already mounted and furnished. Bishopstone Hill was also to be trenched with flankers for small shot.

At Seaford a falcon and two falconets were already mounted and furnished but trenches and flankers for small shot were recommended. At Chinting farm there was a saker, but the rampier and the carriage and wheels were utterly decayed. Two demi-culverins were recommended for the cliff.

Cuckmere Haven had a saker, minion and robinet, all furnished; a rampier was to be made. Birling gap was to be fortified or rammed up.

Existing earth bulwarks and rampiers at Eastbourne were to be mended and strengthened with 'apt' flankers. There were already a demi-culverin, two sakers, three robinets and three bases with their chambers but no powder or shot. The marshland and cliffs from there to Fairlight were considered a reasonable deterrent to penetration inland from the coast but despite this the haven mouth was to be heavily armoured. Two rampiers were to be provided with provision for a demi-culverin and two
sakers on each; in addition it was needful for the Captain there to have six pieces aptly mounted for the field. The smallest piece was to be a saker. At Cooden beacon some entrenchments and flankers were recommended.

Pevensy Castle was to be 're-edified or utterly raised'. There were two demi-culverins there, of small value. [At the time that Lower wrote two demi-culverins were still at Pevensey and it is possible that the surviving Pevensey demi-culverin is one of these guns].

At Bulverhythe point a rampier was to be constructed for a demi-culverin and a saker. Hastings was bristling with ordnance and was, after Rye, the best defended town on the coast with a mixture of brass and iron ordnance. There were three Portugal bases of brass with four chambers of brass for each of them, one iron culverin unmounted, two sakers, two minions, one robinet mounted and three quarter slings stocked. There was sufficient powder and shot.

Winchelsea was considered a threat should the enemy take the town so a demi-culverin and two sacres at least were recommended.

Only three people were living at Camber Castle which was in good repair and well furnished with ordnance and munitions, a cannon, two curtall cannons, one demi-cannon, a culverin, two demi-culverins and two sakers.

Rye was furnished with great ordnance and munitions both of the Queen's and of their own. The individual guns were not identified but there were no fewer than thirteen brass and ten iron pieces.

The potential benefit of such a project to the Wealden ironworks would have been substantial. If only a small number of the seventeen demi-culverins, twenty three sakers and six other pieces together with the shot required were supplied the order would have provided employment for a substantial workforce in the Weald and profits for the ironmasters. Did this proposed renewal of the coastal defences ever take place? Can any of our members who live along the coast identify where the defences were and do any of the guns survive in the vicinity?
CINDERHILL, LEIGH, KENT.

B.K. Herbert

The last of the 1993/4 forays took place in April with a second visit to Cinderhill bloomery furnace site at Leigh in Kent, TQ/53304588. This is recorded in Straker’s book, Wealden Iron, but is of unknown date, and in the Spring of 1993, WIRG had failed to find any dating pottery in two small excavations. The location is unusual in that it is over a quarter of a mile from any significant stream. A house to the NE of the site is called "The Bloomery", the owners being well aware of this with their garden full of slag.

Two 1.5 by 1.5 metre cuttings were started where the metal detector indicated slag, although probing suggested that there was very little. Unfortunately, the probe was correct and, although a shallow ditch filled with slag was found at subsoil level, there was no pottery.

At this point it was decided to probe in line with this ditch. At about 18 inches depth, the probe went through a thin crunchy layer. Small test holes were dug, to reveal that the crunchy layer was in fact roasted ore fines, the sieved waste after the roasting process. This also accounted for the lack of charcoal in the excavations, as ore is roasted with wood as a fuel, and the resulting ash would have dissolved away.

References:
NOTES ON EARLY-18th CENTURY MEMORANDA ON THE MAKING OF IRON

J.S. Hodgkinson

The expenditure accounts for Beech and Robertsbridge furnaces and Robertsbridge forge, between 1726 and 1735, have received little attention. They are worthy of interest, however, for a series of memoranda preceding the accounts, which add to our knowledge of the detail of charcoal ironmaking in the Weald and elsewhere. There are several published descriptions of aspects of the practice of iron making, the most familiar examples from the Weald being those of John Ray and John Fuller; the latter a most comprehensive description. The memoranda transcribed below (in italics) do not provide a full description of either the smelting or forging process. Rather they supplement the better known accounts. The memoranda appear to constitute a series of notes, perhaps made by the clerk of the ironworks for his successor, for the guidance of someone either new to the iron business, or to the Weald, or both.

[1] Calculate of charges of wages &c. at a Furnace when she goes on Sand work viz.

<table>
<thead>
<tr>
<th></th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Founder per week of 7 days</td>
<td>14.00</td>
</tr>
<tr>
<td>under Founder</td>
<td>9.40</td>
</tr>
<tr>
<td>Upper Filler</td>
<td>12.00</td>
</tr>
<tr>
<td>under filler</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>25.40</td>
</tr>
</tbody>
</table>

when on plates for ladling per Ton 6s.8d. over and above the weekly wages.

For making ye hearth £1: 10.0

Leathering the bellows 4s. & ye old leathers

House rent and firing. & 1s. per week for looking after the moyne
& coals & keeping acco. of the carryers bringing em in.

Casting hammers and anvills 1s. each over & above the weekly wages.

The detail above helps to clarify the varied information on skilled labour charges which is available from other sources. Payments for ladling iron, casting hammers and anvils etc. were regarded as extra to the normal wage, whereas in the Ashburnham furnace accounts, for example, the wages paid to the founder, borer, moulder etc. are itemised and, in many cases, grouped together with other sums for additional work carried out. For example, in the long campaign of 1763-4 (referred to as Blast AL), which lasted 45 weeks, Thomas Johnson, the founder at Ashburnham, was paid £125 16s 9d for blowing the furnace, which averages £2 16s a week. No mention is made in the account of a separate payment to a filler, nor to an under-founder or -filler, so it could be assumed that his responsibilities were shared with subordinates, and his wage shared in proportion. However, included in the sum for the campaign, which is comparable to the payments in the Beech/Robertsbridge account, is payment for 'breaking the hole twice & the dam once' and 'casting 30 plates in sand', so the figure is distorted to an unknown degree. If the Ashburnham and Beech/Robertsbridge figures are comparable, little if any inflation in labour costs had occurred in the intervening forty years.

The efficient and reliable performance of the two pairs of bellows which provided the blast for the furnace was essential, particularly if guns were being cast, for control of the blast was crucial to the reduction process, and to the state of the metal in the hearth. In March 1748 John Fuller observed to Samuel Remnant that one of his bellows had 'been ill of an Astma this month', and was particular that ox hides, rather than bull or stag hides, be used as replacements. By June the bellows had not been repaired and were looking 'like a ship with Jury Masts after a storm'. Payment for work on bellows differed between Ashburnham and Beech/
Robertsbridge. At the former, separate payments were made for currying hides and then sewing them; the hides, which were bull hides, and the oil to soften and preserve them, being purchased separately. The total payment when the bellows were repaired in about 1765 was £6, of which the sewing accounted for 10s 6d. At the latter furnace we have no information about the supply of raw materials, merely that the repairer was given the old hides, though what use they could be turned to in their worn state is difficult to imagine. In terms of sewing the hides, labour costs at the two sites are roughly comparable.

[2] NB about 3 loads of coal do make a Tun of Gun mettle, & to exceed that little or not at all.

This ratio compares very favourably with the figures quoted for the production of pig iron at other furnaces at about the same period, assuming that there is consistency in the definition of a load. 6

NB to have all underwood cut between ye end of Octobr. and Candlemass if possible.

NB Observe the woodcutters that they cut ye cordwood as close as possible & not leave the Tree too large which they are apt to do.

NB In wood cutting it is good to avoid being late; begin as early as you can and agree to have yr. wood all cut by ye beginning of February if possible, and in order to it in yr. putting onto yr. wood to cut avoid putting it all out to yr. collier, for if he takes it all hee'l be apt to keep the best part to himself, and by letting out the worst to others hee'l discourage all other wood cutters who will in consequence go to other woods to cut, it being the colliers steady view to make his cutting, setting, coaling &c. last the year round. And when you begin wood cutting let the [?] tree be made up if possible as the wood cutters go on, which will prevent the damage yr. woods will sustain by lugging & pulling the [?] tree about in the Spring late when the bud & shoot springs.
The above three paragraphs suggest that the relationship between the ironmaster and the colliers was not always an easy one. The ironmaster would rent the woodland but the colliers would be given what amounted to a free hand in the way they cut and coaled the coppice. The ironmaster was interested in the preservation of the woodland as a resource for the ironworks, whereas the colliers' interest was in deriving a living from the woods in the best way they could, a motive which would not necessarily coincide with that of the ironmaster. The desirability of having all the wood cut during the non-growing season, when incidentally the furnaces would be in blast, conflicted with the colliers' need to have a livelihood throughout the year. The ironmaster could protect his interest by employing his own wood cutters, but had to ensure that the itinerant colliers who coaled the wood did not discourage others by selfish exploitation of the woodland.

Observations about Moulders work when on Gun & [?] loam work of severall sorts.

- Moulding large and midling Guns £3. per week or £1 per Ton, the Moulder paying for boring, cleaning & stopping & cutting off ye heads.
- For very small Guns £4 per week.
- For making Cages 5s. per cage.
- For cutting skantling boards for guns £1 [?] each.

The distinction between sand and loam work is evident from these memoranda, different skills being employed in each. Loam was generally used in the construction of gun moulds, and possibly for other castings where non-reusable moulds were employed, such as sugar or garden rollers. Sand would have been used for open-mould castings, such as sows and firebacks. Local sources of both sand and loam were known to founders.
and the positive identification of such sources would be of great interest.

Again there is a difference between Beech/Robertsbridge and Ashburnham. At the latter many of the responsibilities of the moulder were paid for separately, although it is apparent that at all three works the jobs may have been done by several people. The cages would be the frameworks of metal strapping which encased the moulds of guns. Unlike the rest of the mould, this part would be reusable. The 'skantling boards', also known as strickle boards, were cut to shape from paper draughts and bore the exact longitudinal outline of the gun.

NB a very good method to allow the Smith 1s. per day for all work at the Furnace while on Guns which is what Mr Fuller constantly allows.

A smithing hearth and anvil would have been a permanent feature of a gunfoundry, to make alterations to the cages, and to repair equipment such as boring bars.

[4] NB In the beginning of a blast it is right to blow very softly for fear of the hearth; on the best calculation I can make I think not exceeding nine puffs in a minute for about four days is well and then to increase it to about twelve puffs or eleven in a minute will do well. At Beech when the furnace is in order we go about 24 or 25 charges in 24 hours & carry about two hundred 3 qr. of mine & 4 baskets of coals to a charge of which baskets 24 make a load of coals.

No details of the rate at which the furnace bellows were pumped is included in John Fuller's description of furnace operation so the above passage is of considerable interest as calculations can be made about the amount of air being pumped into the furnace with each 'puff', and also about the volume of water which was required to sustain such a blast over a period of time.

At Chingley furnace the remains of the axle tree which operated the bellows was excavated and surviving mortices indicated that each of
two pairs of bellows was depressed three times for every rotation of the water wheel. This would provide for six 'puffs' for every rotation and therefore, in the example quoted in this document, the normal operation of the bellows required two rotations of the water wheel in a minute. The average diameter of furnace water wheels excavated in the Weald is 10ft 6in (3.2m), which would give an average circumferential speed for such wheels of 1.1 ft/sec (0.33 m/sec) at two rotations a minute. In the absence of more specific data, estimates of the power output of water wheels were made by Dr P. Strange, who assumed a circumferential speed of 3 ft/sec for the water wheels at Chingley, where the forge wheels were approximately 8ft in diameter and the furnace wheel 11ft. The energy required to operate the wheel powering a forge hammer would have been considerably greater than that necessary for a furnace wheel, but the slower circumferential speed than the estimate made for Chingley indicates a smaller power output, and has implications for estimates of the amount of water needed. Incidentally, from this estimate of the speed of the water wheel, the effort required to 'tread the wheel', which had to be done at three furnaces in 1743, can be compared to briskly walking up a flight of steps.

The size of charge at Heathfield furnace cannot be easily compared with that at Beech/Robertsbridge. The number of baskets of charcoal is comparable, although it is not certain that the baskets used at Heathfield had the same capacity. At Heathfield the ore was measured in wooden or metal containers called boshes which held forty or fifty pounds of ore (these should not be confused with the part of the inside of the furnace which bore the same name). Fuller's description implies that furnaces could hold an average of about 1000 lb of ore at any one time, but he is not specific about the amount of ore placed in the furnace with each charge. At Beech the charge is stated to be 308 lb of ore which, over a twenty-four hour period, amounts to an average of 7392 lb (3.3 tons), and equates to the production of about 0.75 tons of cast iron (assuming an ore:pig ratio of 4.3:1), about half the expected output of a Wealden
furnace in the period.12

\textit{NB In making the hearth when it is finished it is a very good method to strike it over with loam & hair wch on the first heating will contribute to the glazing of the hearth and consequently to the preserving it ye longer & makes it endure the blast both harder and longer.}

Fuller's description refers to the necessity of gradually warming the hearth and the furnace stack by burning timber in them and also describes the tendency of iron to stick to the walls of the furnace on blowing in, but offers no remedy for the latter.13 To what extent the above method of glazing the hearth was more widely used is not known.

\textit{NB A cord of wood in Sussex is in measure as follows: 14 foot long, 3 foot wide & 3 foot 2 inches high. ye 2 inches in heighth being allow'd for shrinking or settling.}

Cords of wood vary considerably. Cleere & Crossley quote cords of 126, 128 and 168 cubic feet, and the dimensions by which such figures were arrived at also differ widely.14 Straker refers to similar variation.15

\textit{NB a black cinder is a sign of good grey Iron in ye hearth, & if you find y'. Iron too white on ye increasing y'. moyne, you must take off some weight of moyne & for a little while abate y'. blast two puffs in a minute or thereabouts, & if that doth not do it is then proper for a small time to increase a basket of Coals p' charge, but if y'. hearth be extreamly much worn ye only way is to blow out for in that case you can't have neither good iron nor a good yeild.}

The production of grey cast iron was highly important in the manufacture of guns. Grey iron contains carbon in the form of graphite and, while having greater tensile strength than white cast iron, i.e. is less brittle, it is softer and more able to be cut and filed.16 Without these qualities cast iron guns would be prone to bursting and it would be difficult, if not impossible, the remove the gunhead and any surface irregularities. White cast iron was suitable for manufactures which would not be subject to stresses,
e.g. firebacks, round shot, or for conversion in forges where a lower proportion of silicon in the iron was required. The faster cooling rate of open-mould casting tended to lead to white iron being produced. Variation in the colour of slags may be a useful indication of the type of iron produced at a furnace and consequently in distinguishing between possible ranges of products, e.g. sows for forging, or ordnance. Fuller described the relationship between the appearance of slags and the condition of the furnace, pointing to the colour as a guide to the need to increase or decrease the ore or the charcoal.17

[5] NB it is best to keep a bright Twere when you are blowing, for if y'.

tweer is dark by the growing of sinder upon it, must be a great loss of ye wind from the bellows & weaken the blast.

Fuller describes the 'Recrements which hang about the Tweier' being worked free with an iron pole called a ringer, presumably inserted through the casting arch; the same implement was used to extricate solidified slag from the hearth.18

NB be carefull how y'. Founders manage in the night season for if they don't sleep by turns & always one be in watch & work the bellows must often be liable to blow almost cold, for want of the tweer being kept clear & ye furnace must be check'd for want of lingering, & in such case you'l find a going off in your yeild, and to conceal such negleck they are apt when they awake to increase the blast with violence to fetch up ye lost time, in every instance this is very prejudicial.

The need to balance carefully the three elements in the smelting process - air, ore and charcoal - so that the iron was of the correct quality for its purpose could not be done retrospectively, for once in the hearth its chemical constitution had been decided. The commitment of the skilled workforce clearly could not be relied upon, as witness the experience of Abel Walter, at Sowley furnace in Hampshire, in 1758, where his reput-
ation as a supplier of guns, and possibly the financial basis on which that supply was mounted, was destroyed by the carelessness of his founder, known as 'Drunken Bets'. Twenty three out of Walter's consignment of thirty seven guns failed the Ordnance Board proof.\(^{19}\)

References:
1. East Sussex Record Office (ESRO) XA3/13 (microfilm). The marginal numbers, in square brackets, refer to the division of the memorandum into pages, which are un-numbered in the original.
4. ESRO ASH 1815
15. Straker, *op. cit.*, xii.
A FOURTH FORAY ON THE LONDON-LEWES ROMAN ROAD

B.K. Herbert

Work in February 1994 brings up to date four years of retracing the London/Lewes Roman Road1,2,3, described by I.D. Margary in his book, \textit{Roman Ways in the Weald}. Reference to places on the road are noted by letters in brackets and are marked on the maps, whilst an associated list of map references is given at the end of the article; places situated off these maps have numbers in brackets.

The previous foray, which came from the north3, finished near Bassett's Manor (A), where the owner says much slag was found when a new silage pit was dug out (B). Close to this silage pit is an older water-filled pit (C) with the road almost touching the west end, and where pieces of cyrena limestone were found lying in a field close by. However, no sign of the road could be found between these two pits and the un-named river (D). On the north bank of the river an extensive chalybeate spring still runs (E), this is the "bog with rusty slime" noted by Margary. It should be realised that the exact course of the river crossing may never be found due to having changed its course over the years. The flood plain is some 30 yards wide here and the valley may well have silted up due to a weir (1), some 1500 yards down-stream, where water was taken off into a head-leaf for Bolebrook corn mill (2)4

A few yards south of the river and 2 feet down under the bank of a ditch (F), the road surface was seen for the first time, along with some large tabular sandstone blocks similar to those under the road bridge (G).
It is interesting that this ditch is on the course of the head leat to Bassett’s blast furnace (3). The course of the road up from the river passes between a small dry pit and the electricity pole (H), with still no surface evidence; as the hill flattened out (I) a slagged surface could be probed and was followed to the drive-in (J) to Bassett’s Manor.

The road is lost again beyond the drive until it enters a small copse (K to L) where it was probed and found to be slagged and in good repair just below the surface, whilst a ditch on the south side of the copse (L) cuts through the slagged road. Beyond the copse, all signs of it were lost again up to Butcherfield Lane (M). Beyond the lane the ground is raised to form a causeway (N) leading towards a "modern" pit with slag visible on the north edge (O). From the south side of the pit a hollow way goes up a steep slope (P to Q). Unfortunately, it is suspected that all three of these features are contemporary with one another and not related to the road, especially as it should be some 10 metres to the east at the top of the hollow way (Q), near the field boundary. At this point, it is possible to view the southerly course of the road from the Holtye road.

No sign of the road was found up to the summit of the hill (R), nor down the other side to a road (S) leading to St Ives Farm.(4) Beyond, in the next field, the road is not visible, although it was seen on the east side of the hedgerow (T); it is seen again half way down the field (U), where slag was found 2 feet down in the ditch. It then became obvious by probing and by using the metal detector that the road was passing under the hedgerow and ditch at a glancing angle, and this accounted for slag being found in the ditch for some 50 feet between (U) and (V) at a depth of two feet. Beyond the west side of this field two pits (W and X) were seen; these are discussed below.

In the next field, now within view of the river Medway, the road passes just to the west of the gate (Y), where pieces of slag were found on the bare ground, whilst slag was also probed intermittently further down the field (Z). To the east of the road, a north/south gill starts abruptly(*),
Fourth Foray on the London-Lewes Roman Road
not deepening gradually in the usual way. This geological feature is
difficult to justify; maybe the start of the gill was "filled-in", from (U) to
(*), to enable the road to remain on a straight level course.

Dowsing experiments were carried out at this point, using two
iron wire rods bent at right-angles held in ball-point pen holders: the road
could be detected by two people; further experiments will be carried out
to prove the usefulness of this technique, especially for finding side roads.

No further sign of the road was found down to the Medway ($),
where the flood plain is 100 yards wide. Unfortunately, here the foray had
to stop and the investigation of some sandstone blocks on the flood plain is
covered in Part 5.

The bare ground beside the gate (Y) and a cattle trough (&) make excellent "line of sight" markers for the final foray from the Medway
to Gallypot Street(5).

The opportunity was taken to investigate features in the vicinity of
Chartner's Farm (6). Here the track ran between two pits (7) and (8), but
was probably one pit originally. The east pit was water-filled and typical of
many in the Weald but the other had a 30 foot high face on the north side;
much higher than usual. These pits and others (9) and (10) near St Ives
Farm (4), are on a faulted junction of the Wadhurst Clay & Ashdown
Sand. It may be that the fault has not caused the iron ore to be buried too
far down, and that the ancient miners discovered this source of ore.

References:
2. *WIRG Bulletin* 13 (1993), 14-20
Map References:
 The 1:25000 O.S. map, 1965 ed. shows the Roman Road 20 metres
 west of the course surveyed by the group.
(A) TQ/46703775 Bassett’s Manor
(B) TQ/46523777 Silage pit
(C) TQ/46533773 Water-filled pit
(D) TQ/46573751 The river
(E) TQ/46573752 Chalybeate spring
(F) TQ/46603739 Blast furnace head leat
(G) TQ/46703740 Drive-in bridge over river
(H) TQ/46623735 Between pit and electricity pole
(I) TQ/46633735 Before Bassett’s drive
(J) TQ/46643721 Road across Bassett’s drive
(K) TQ/46663718 North side of copse
(L) TQ/46673713 South side of copse and ditch
(M) TQ/46703698 Butcherfield Lane
(N) TQ/46723694 Middle of causeway
(O) TQ/46723691 Modern pit
(P) TQ/46723690 North end of hollow way
(Q) TQ/46743683 South end of hollow way
(R) TQ/46773671 Summit
(S) TQ/46793660 Road to St. Ives Farm
(T) TQ/46803658 Roman road just to east of hedgerow
(U) TQ/46813653 Start of Roman road in ditch
(V) TQ/46823647 End of Roman road in ditch
(W) TQ/46683652 Pit west side of field
(X) TQ/46693646 Pit west side of field
(Y) TQ/46833644 Bare ground to west of gate
(Z) TQ/46843641 Field beyond gate
(*) TQ/46843645 Head of gill
(&) TQ/46873627 Cattle trough on old field boundary
($) TQ/46913611 River Medway
THE FIFTH AND FINAL FORAY ON THE LONDON-LEWES

ROMAN ROAD

B.K. Herbert

The March 1994 survey brings to a close the project to re-trace part of the London-Lewes Roman road from south of Edenbridge to Gallypot Street, near Hartfield; the previous forays are listed below (1-4). As before, points of interest are noted by letters in brackets and marked on maps copied from Margary's book Roman Ways in the Weald, whilst an associated list of map references is given at the end of the article; places situated off the map have numbers in brackets.

The foray started on the south bank of the Medway (A), whilst the last known probing of the road was some 300 yards north of the river, marked Z in the previous report. As there was nothing to be seen in either river bank, other possible locations for a river crossing were considered, but without result. With a 100-yard-wide flood plain, the river might well have moved laterally, destroying all signs of a crossing. After a great deal of probing well away from the river, a slag base was eventually found about 1 foot down (B); at this point some slag and large pieces of
Fifth and Final Foray on the London-Lewes Roman Road
sandstone were seen on the surface. After probing back towards the river, the slag base ran out 27 yards from the river bank (C); at this point it was 2 feet down in the silt. Whether this was the edge of the river at the time could not be ascertained, although a simple excavation would be of interest.

Field names on this part of the river, at Little Millpens Wood (1), suggest that there was a corn mill in the vicinity, perhaps with pen ponds, although it has not yet been pinpointed. As it would be impossible to operate a water mill on the flood plain of the Medway, the author suggests that it would have operated using the "head leat" principle, allowing the mill building to be situated just off the flood plain. It is interesting to note that there is a water course, now dry, from (D) to (2), beside the railway. The sandstone blocks that were found in the field (B), and which are on the flood plain, could be the remains of a weir (within a bay) controlling water to this head leat.

The road was found by probing to be intermittent just south of where the railway line crosses the line of the road (E). Beyond this point nothing was detected until the brow of the hill (F) where a recently installed pipe has brought a scatter of slag to the surface; however, no slagged road surface could be probed here. No further sign of the road could be found across this field to the boundary (G).

Beyond the field boundary (G) the land drops steeply some 6 feet down to a stream (H) over a distance of about 15 feet. A slag surface was seen under the south bank (H), therefore the road must originally have run in a hollow way to drop to a ford at stream level. Beyond this stream the road runs up a valley, where at one point another stream probably flows on the course of the road, before passing to the east bank; the last visible slagged surface was seen in this stream at (I). The land gets rough from here as the road is bounded by woodland to the east and a boundary bank on the west side. A small amount of slag was found beyond the boundary bank, but well off the course of the road (J); although it
probably originated from it. There was no sign of the road in the next field (K) to (L). The final field before the Forest Row to Hartfield Road (L) to (M) at Gallypot Street showed little sign of slag until just prior to the Hartfield Road (N), where a wide scatter of slag was found, making it difficult to pinpoint the line.

The opportunity was taken to search the stream flowing north from where the road crosses it (H). Nothing was found until what seemed to be black bloomery slag was noted in the bed on the stream (O). This turned out to be a conglomerate, a natural geological material which causes no response from a metal detector.

This series of five forays covers 5.5 miles of the London-Lewes Roman Road. In all this length there are only about ten places where a convincing surface or section was seen, or a surface probed; one of these places has been mistaken, in the past, for a bloomery furnace site.

The author would like to thank all members of the WIRG field-walking team for their contributions. WIRG would like to thank the eleven land owners for showing so much interest in our findings and allowing us to walk so freely over their property.

References:
1. *WIRG Bulletin* 12 (1992), 2-8
2. *WIRG Bulletin* 13 (1993), 14-20

Map References:
The 1:25000 O.S. map, 1965 ed., shows the Roman Road 20 metres west of the course surveyed by the Group.
(A) TQ/46913611 River Medway
(B) TQ/46933605 Slag and sandstone
(C) TQ/46923609 First probing of Road south of river
(D) TQ/46973598 Start of head leat, west end?
(E) TQ/46963592 Just south of railway
(F) TQ/46003577 Brow of hill
(G) TQ/47033561 Field boundary
(H) TQ/47033560 Stream crossing
(I) TQ/47043555 Last sighting of Road in stream
(J) TQ/47063535 Slag off course of Road
(K) TQ/47103534 Boundary, wood to field
(L) TQ/47123526 Boundary, field to field
(M) TQ/47163511 Forest Row to Hartfield road
(N) TQ/47153512 Well scattered slag in field
(O) TQ/47053567 Conglomerate, not slag

Map References off the map:
(1) TQ/47203605 End of dry head leat, east end?
(2) TQ/46883732 Little Millpens Wood
INDEX

Compiled by David Combes
with the assistance of Dorothy Hatswell

Ades, Henry 12:12
Adur, river 11:9
air-furnace 12:37
Alfold 11:6
Amy, Thomas 11:24
Arun, river 14:14
Ashburnham Furnace 13:21 14:23
15:13
Ashburnham, Lord 12:34
Ashburnham, John, Lord 12:43
Ashburnham, founder 15:10
Ashdown Forest 11:11
Ashdown Sand 12:3
Ashurst Furnace 12:15
Ave Maria Wood 11:5
Awty, B.G. 11:11,14
Badsell Park Farm 13:11 14:2
Baker, John 13:22
Baker, Mr 13:22
bar iron 14:14
Barden Furnace 12:15 13:21
Barden, Charles 11:24
Bardown 11:2
Barham John 13:46 14:28
Barnes, C. 11:19 12:11
Bartholemew, Richard 11:22
Bartley Mill 11:9
Bassett's Manor 15:18
Battle 11:2
Battle Abbey estate 12:29
Battle, Park Mill 12:40
Bayham Forge 13:46
Beach Furnace 12:43
Beare, Thomas 12:49

Beauport Park 11:2
Beckley Furnace 14:24
Beckley bloomery 13:2
Bedgebury Furnace 13:21
Beech Furnace 12:32,34,43,54 13:28
14:24 15:9,13
Beech Furnace, sketch of 12:39
bellows leather 15:10
bellows, material of 15:10
Benett, John 11:23
Benge, Ann 14:28
Benge, Lucy 14:28
Benge, Mr 13:23 13:24
Benge, William 13:25,44,46 14:28
Bemers-Price, J. 11:7 13:4
Berriff, Joshua 13:23
Bettesworth, Sir Peter 12:12
Bettesworth, Thomas 12:11
Bill Books (PRO) 13:20
Birling Gap defences 1587 15:6
Blackdown 11:19
Blake, Mr 13:26
bloomery, medieval 15:2
bloomery, Romano-British 11:5
Board of Ordnance 13:20 14:31
Botton, John 12:37 12:56
Boulter, William 13:26
Bourne, Henry 12:37
Bourne, James 12:37,48 14:32
Bourne, James & Co. 14:33
Bowen, William 13:9 14:32
Bramshott 11:19
Braxton, Thomas 12:58
Braxton, Thomas 12:37
Brede Furnace 13:23,24 14:20
Brenchley Furnace 13:8
bressumer 13:44
Brighton defences 1587 15:5
Briton's Water 12:10
Brodribb, Dr G. 11:2
Brookland Furnace 11:11
Brown, R.R. 13:20 14:31
Browne, George 13:8,21
Browne, Edward 14:20
Browne, Mr 13:22
Browne, Sir Anthony 12:31,32
Bryda, Blasse 11:24
Budgen, Richard 12:34
Bulverhythe defences 1587 15:6
Burel, Thomas 12:55
Burningfold Furnace 14:13
Burr, Thomas 13:9
Butler, John 11:27 14:13
Buttons (Wadhurst) 14:3
Campion, Henry 12:11
cannon, curtall 15:5
cannon, size of 15:5
Cansiron Forge 15:2
Carron Company 14:32
cast iron, grey 15:15
charcoal, making of 15:11
Charlton, John 13:25
Chartners Farm 15:21
Chichester harbour defences 1587 15:5
Chingley Furnace 15:13
Chinting Farm defences 1587 15:6
Chitcombe 11:2
Churchill family 14:32
Churchill, John 12:36,47,56,60,61
Cinderhill bloomery 13:2 15:8
Clanricard, Richard Earl of 12:50
Clappers Wood 11:5
Clark, Samuel 12:56
Clasis Britannica 11:2
Clayton, Mr 13:22
Clayton, William 13:22
clay, Wadhurst 11:5
coke (as fuel) 14:13
Colleng, William 14:42
Combes, Mrs P. 15:4
Constance Furnace 13:25
Conster Furnace 13:29
Cooden defences 1587 15:6
cords, size of 15:15
Courthope, Alexander 13:8
Coushopley Furnace 13:25,28
Covere, Walter 15:4
Cover, Nicholas 11:23
Cowden Farm 13:9
Cowden Furnace 13:9,25,28
Cowden Lower Furnace 12:2
Cowdray, Lord 14:14
Cowper, John 11:13
Crawley bloomery 15:2
Crawshay, Richard 14:15
Crotchets Farm 11:19
Crowley, Theodosia 14:33
Cuckfield Forge 15:4
Cuckfield Furnace 11:7 15:4
Culpeper, John 12:49
Culpeper, Thomas 12:33,49
Dalton, A. 14:3
Danehill 12:9
Danehill bloomery 12:9
Danemore Lands Farm bloomery 11:5
Darwell Furnace 13:28
De Lisle and Dudley, Lord 12:33
Dell Quay 15:5
Eade & Co. 14:36
East India Company 14:44
Eastbourne defences 1587 15:6
Elliott, George Alexander 14:37
Embham Furnace 13:21
English, Henry 12:33,49
Etchingham Forge 12:41
Fairlight defences 1587 15:6
Falcon Foundry, Southwark 14:32
Fauconer, Henry 14:29
Fawkerner, old 11:23
Fawkner, John 12:16
Fernhurst 11:19
Fincher, Phillip 13:28
Fletching bloomery 12:12
Foley, Thomas 13:8
Fore Wood bloomery 12:8 13:3
founding, cost of 15:9
Fowler, John 12:55
French, John 12:16
Fuller, Maj. Jno. 13:26
Fuller, John 13:28 15:9
Fuller, Rose 14:37
Fuller, Stephen 14:39
furnaces, blowing of 15:11
furnaces, charging of 15:14:
Fyner, Henry 11:11
Gage, Sir Edmund 12:16
Gardiner, Mr 13:26
Gloucester Furnace 13:28 14:21
Godalming 14:14
Goodsall, Stephen 12:38
Goodyear, James 11:28 14:13,14
Goring defences 1587 15:5
Gott, Peter 13:28
Gott, Samuel 13:24
Grassy Wood 14:2
graveslabs, Sussex 14:28
Gravetye Furnace 12:19 14:29
Great Cansiron bloomery 15:3
Gresham, Sir Thomas 14:19
guns, price of 14:35
guns, proofing of 14:32
guns, purchasers of 14:35
guns, purchasing of 14:32
Guy, David 12:37
Guy, David William 12:48
hammer, wrought iron 11:9
Hamsell Furnace 13:22,25,29
Harrison brothers 14:32
Harrison, William 12:36,53
Hartfield 11:5 15:3
Hartfield bloomery 15:3
Haslemere 11:19 12:10 14:14
Hastings defences 1587 15:6
Hawkhurst Furnace 13:21,25,28
Hayes, Mr 13:25
Hay, Richard 12:34,43,54
Heathfield Furnace 15:14
Henly Furnace, Lower 13:4
Henly Furnace, Upper 13:7
Henry VII 11:11
Herbert, B.K. 12:8,9 13:7,11,31,34
14:5 15:8,18,23
Herbert, Edward 13:8
Herefordshire Record Office 13:8
Hilder, Edward 12:35
Hills, William 12:43
Hilman, Constance 11:22
Hoad, John 11:21
Hoathly Farm 13:44
Hoathly Forge 13:34
Hodgkinson, J.S. 11:2,7 12:2,13
14:13,20,28,29 15:2,9
Hogge, Ralph 11:14
Holloway, Jarrett 12:32,35,42
Holmewood, Susan 14:30
Hooke, Henry 12:12
Horam 11:5
Horsmonden Furnace 12:15
13:8,21,38
Houghton, R.G. 11:7,23 12:16
Howbourne Forge 11:13
Huntington Library 12:29
Huntington, Henry Edwards 12:29
Imbham Furnace 11:26
Infield, Katherine 14:29
Ireland, Thomas 11:24
Iron Plat Furnace and Forge 12:23
iron pits 12:3
ironworks, illustrations of 14:20
iron, bar 14:14
iron, forging cost of 15:9
iron, making of 15:9
iron, smelting cost of 15:9
iron, transport of 14:14
Jarvis, Robert 12:40
Jewkes, George 12:45
Jewkes, William 12:36
Johnson, Mr 13:21
Johnson, Francis 13:9
Johnson, Jeremiah 13:22
Johnson, Thomas 15:10
Jukes, George 12:52,53,60
Jukes, William 12:45,52,53
Kent Archives Office 13:9
Kent Water 12:3
Kitford Mead 12:3
Knight, Mr 13:9
Knight, Robert 12:19
Laby, Nicholas 11:24
Lamberhurst Furnace 13:34,39
Lancing defences 1587 15:5
Laughton Church, gravestones 14:28
Lavender, John 12:62
Lawley, Sir Robert 12:56
Leake, Capt. Richard 13:23
Leicester, Earl of 12:44
Leicester, Robert Earl of 12:49
Leigh bloomery 13:2 15:8
Lenard, fireback 14:20
Leppard, M 12:27
Levett, Parson 11:14:
Lewes 13:26
Lewes-London Way 14:5
Lewis, George 13:9
Linch 11:19
Lisle, De, and Dudley, Lord 12:31
Littlehampton 14:14
Littlehampton defences 1587 15:5
Littleton, James 13:22
Littleton, Mr 13:22
Littleton, Sir Thomas 13:24
Liverpool University 15:2
Locherson, John 12:49
London-Lewes Roman Road 12:2 15:18,23
Lower, Mark Anthony 15:4
Lurgashall Furnace 14:15
Lyminge bloomery 15:2
Lynchmere 11:19
Lytton, Elizabeth 12:40
Lytton, John 12:40
Margary, I.D. 12:2 14:5
Masters & Raby 14:32
Masters, Alexander 12:22
Matfield 13:11
Matfield Furnace 14:2
Matthews, Geo. 14:43
Mauritius, The 12:13
Mayfield 11:6
Mayfield Cannon 14:16
Mayfield Falcon 14:16
Mayfield Furnace 14:19,23
Meades, Mrs D. 12:23
Mew, J. 14:4
Mill Place Furnace 14:28
Milland Furnace 12:11
Millington, Josiah 14:33
Minute Books (PRO) 13:20
Montague, Lord 11:23 12:31
Montague, Lord Francis 12:40
Montague, Lord Henry 12:42
Montague, Viscount 12:32
mortars, iron 14:32
moulds, making of 15:11
Mount Noddy 12:27
Navigation, Rother 12:36
Newbridge ironworks 11:13
Newhaven defences 15:5
Newhaven defences 1587 15:6
North Park Furnace 11:19,26 12:19 14:13,14,15,23
Olde, Maryan 11:24
Oliver's Mill 11:23
ordnance, cast iron 11:14
ordnance, casting of 13:21
ordnance, furnaces producing 13:21
ore, carriage of 12:57
ore, load of 12:57
ore, price of 12:57
ore, sources of 12:51
Paler, John 11:13
Palmere, Sir Thomas 15:4
Panningridge Furnace 12:33
Paradise Wood bloomery 15:3
Parrey, Kenrick 12:49
Parrock 11:5
Paternoster Wood 11:5
de Peler, Joahnnes 11:12
Pelham, Sir Jno 13:27,28
Pevensey Castle defences 1587 15:6
Phillips, John 12:15,37,48
Pophole Forge 11:23 14:14
Portsmouth 13:28
Pottens Mill 14:4
pottery Samian 15:3
pottery, East Sussex ware 13:3
pottery, Romano British 11:5
Pounsley Furnace 13:28
Powell, Sir Christopher 12:31
Pickett Thomas 11:28 14:13
proofing of shot 13:26
Public Record Office 13:20
Pullyn, Charles 11:24
Quennel, Roger 11:23
Raby, Alexander 12:16
Raby, Edward 12:16,22
Ray, John 15:9
Reigate 11:6
Remnant, Samuel 15:10
resistivity meter 13:31
Reynolds, Nicholas 15:5
Richards, Jacob 13:23
Riden, P. 14:13
road, Roman Lewes-London 14:5
Robertsbridge Forge 12:45,47,48 15:9
Robertsbridge Furnace 12:32,36,44, 45,47,48,53,54,60 15:9,13
Robertsbridge, Forge 12:52
Roman road 14:5
Rother, river 14:14
Rother, river navigation 12:46
Rutland, Roger Earl of 12:49
Rye defences 1587 15:6
Rye Harbour 13:25
Saltdean defences 15:5
Salter, C. 14:15
Sawyer, H. 12:4
Scarlets Furnace 13:10,28
Scrag Oak bloomery 14:3
Seaford defences 1587 15:6
Seymour, Robert 12:12
Shoreham defences 1587 15:5
Shotter Mill 11:22
Sidney family 12:33
Sidney, John 12:44
Silvester, Edward 13:26
Simmons, James 11:21
Snepp, Thomas 12:34,44
Southwater bloomery 15:2
Sowley Furnace 15:16
Speldhurst 11:5
Springale, Herbert 13:8
Stone, David 12:43
Sturt Hammer Forge 11:19 12:10
Sulphur dioxide 14:15
Sussex, coastal defences 1587 15:4
Swaysland, John 13:9
Swaysland, Charles 13:9
Swaysland, Henry 13:9
Tanner, Edward 11:23
Tebbutt, C.F. 11:5
Teesdale, Dr E. 11:14
Teese, river 13:34
Thorpe, John 12:22
Thursley 11:19
Thursley Forge 14:14
Tidebrook 11:6
Tilgate Furnace 11:9
Tollslye Furnace 13:38
Trollope, C.J.N. 14:16
underwood, cutting of 12:46
Upper Stonehurst Farm 13:31
Upper Stonehurst bloomery 13:2
Verbruggan, Mr 14:40
Verdley Furnace 14:14
Verdley Wood Furnace 14:13
WIRG Forays 13:11,14
Wadhurst Clay 12:3
Waldron Furnace 13:28
Waller, Sir Thomas 12:15
Waller, Sir Walter 12:15
Walter, Abel 15:16
Warren Furnace 12:16
Waystrode Manor 12:4
Waystrode bloomery 12:4
Weaver, A. 12:16
Webster, Godfrey 12:34
Webster, Sir Thomas 12:31,33,34
Webster, Sir Whistler 12:36,56,60,61
Webster, Thomas 12:40,43,45,52,53,12:54
Webster, Whistler 12:47,48
Westall, Henry 12:33
Westerne, Thomas 13:24
Western, Maximilian 12:34 13:28
Western, Thomas 13:23,28
Wey, river 14:14
Wheelers Hammer Forge 11:22
Whitmore Vale bloomery 13:2
Whittick, C. 12:29
Willard, Abraham 12:15
Willard, Edmund 12:15
Williams, Dr J. 12:2
Winchelsea defences 1587 15:6
Wolrich, Samuel 13:26
wood for coaling, price of 12:57
wood, price of 12:49
wood, size of cords 15:15
wood, sources of 12:50
Woolbeeding 11:19
Woolcombs Farm 13:9
Worge, George 12:36,57
Worthing defences 1587 15:5
Wright & Pickett 14:32
Wright, Joseph 11:28 14:13
wrought iron hammer 11:9
Yalden, William 11:27